Answer:
The rate of change is 1
Step-by-step explanation:
Given
[tex]\{[3, 4], [4, 5], [5, 6]\}[/tex]
Required
Predict the rate of change
Average rate of change (R) is calculated using:
[tex]R = \frac{f(b) - f(a)}{b - a}[/tex]
Here, we have:
[tex][a,f(a)] = [3,4][/tex] and
[tex][b,f(b)] = [5,6][/tex]
Substitute these values in the above equation
[tex]R = \frac{6 - 4}{5 -3}[/tex]
[tex]R = \frac{2}{2}[/tex]
[tex]R = 1[/tex]
Also, check the rate of change using:
[tex][a,f(a)] = [3,4][/tex] and
[tex][b,f(b)] = [4,5][/tex]
The equation: [tex]R = \frac{f(b) - f(a)}{b - a}[/tex] becomes
[tex]R = \frac{5-4}{4-3}[/tex]
[tex]R = \frac{1}{1}[/tex]
[tex]R = 1[/tex]
Hence, the rate of change is 1