Respuesta :

Answer:

Angles: [tex]\angle A = 43^{\circ}[/tex]   [tex]\angle B = 55^{\circ}[/tex]    [tex]\angle C = 82^{\circ}[/tex]

Sides: [tex]BC = 20[/tex]   [tex]AB = 29[/tex]   [tex]AC =24[/tex]

Step-by-step explanation:

See attachment for complete question

From the attachment, we have:

[tex]AB = 29[/tex]

[tex]AC =24[/tex]

[tex]\angle C = 82^{\circ}[/tex]

Required

Complete the missing side and missing angles

To calculate angle B, we apply sine laws:

[tex]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]

In this case:

[tex]\frac{AB}{sinC}=\frac{AC}{sinB}[/tex]

This gives:

[tex]\frac{29}{sin(82^{\circ})}=\frac{24}{sinB}[/tex]

[tex]\frac{29}{0.9903}=\frac{24}{sinB}[/tex]

Cross Multiply

[tex]sinB * 29 = 24 * 0.9903[/tex]

Divide both sides by 29

[tex]sinB = \frac{24 * 0.9903}{29}[/tex]

[tex]sinB = 0.8196[/tex]

Take arcsin of both sides

[tex]B = sin^{-1}(0.8196)[/tex]

[tex]B = 55^{\circ}[/tex]

So:

[tex]\angle B = 55^{\circ}[/tex]

To solve for the third angle, we make use of:

[tex]\angle A + \angle B + \angle C = 180^{\circ}[/tex]

This gives:

[tex]\angle A + 55^{\circ} + 82^{\circ} = 180^{\circ}[/tex]

[tex]\angle A + 137^{\circ}= 180^{\circ}[/tex]

[tex]\angle A = 180^{\circ}- 137^{\circ}[/tex]

[tex]\angle A = 43^{\circ}[/tex]

Hence, the angles are:

[tex]\angle A = 43^{\circ}[/tex]   [tex]\angle B = 55^{\circ}[/tex]    [tex]\angle C = 82^{\circ}[/tex]

To calculate the length of the third side, we apply cosine law

[tex]BC^2 = AB^2 + AC^2 - 2*AB*AC*cosA[/tex]

[tex]BC^2 = 29^2 + 24^2 - 2*29*24*cos(43^{\circ})[/tex]

[tex]BC^2 = 841+ 576 - 1392*cos(43^{\circ})[/tex]

[tex]BC^2 = 841+ 576 - 1392*0.7314[/tex]

[tex]BC^2 = 841+ 576 - 1018.11[/tex]

[tex]BC^2 = 398.89[/tex]

Take the square root of both sides

[tex]BC = \sqrt{398.89[/tex]

[tex]BC = 19.9722307217[/tex]

[tex]BC = 20[/tex]

Ver imagen MrRoyal
ACCESS MORE