Respuesta :
Answer:
Angles: [tex]\angle A = 43^{\circ}[/tex] [tex]\angle B = 55^{\circ}[/tex] [tex]\angle C = 82^{\circ}[/tex]
Sides: [tex]BC = 20[/tex] [tex]AB = 29[/tex] [tex]AC =24[/tex]
Step-by-step explanation:
See attachment for complete question
From the attachment, we have:
[tex]AB = 29[/tex]
[tex]AC =24[/tex]
[tex]\angle C = 82^{\circ}[/tex]
Required
Complete the missing side and missing angles
To calculate angle B, we apply sine laws:
[tex]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]
In this case:
[tex]\frac{AB}{sinC}=\frac{AC}{sinB}[/tex]
This gives:
[tex]\frac{29}{sin(82^{\circ})}=\frac{24}{sinB}[/tex]
[tex]\frac{29}{0.9903}=\frac{24}{sinB}[/tex]
Cross Multiply
[tex]sinB * 29 = 24 * 0.9903[/tex]
Divide both sides by 29
[tex]sinB = \frac{24 * 0.9903}{29}[/tex]
[tex]sinB = 0.8196[/tex]
Take arcsin of both sides
[tex]B = sin^{-1}(0.8196)[/tex]
[tex]B = 55^{\circ}[/tex]
So:
[tex]\angle B = 55^{\circ}[/tex]
To solve for the third angle, we make use of:
[tex]\angle A + \angle B + \angle C = 180^{\circ}[/tex]
This gives:
[tex]\angle A + 55^{\circ} + 82^{\circ} = 180^{\circ}[/tex]
[tex]\angle A + 137^{\circ}= 180^{\circ}[/tex]
[tex]\angle A = 180^{\circ}- 137^{\circ}[/tex]
[tex]\angle A = 43^{\circ}[/tex]
Hence, the angles are:
[tex]\angle A = 43^{\circ}[/tex] [tex]\angle B = 55^{\circ}[/tex] [tex]\angle C = 82^{\circ}[/tex]
To calculate the length of the third side, we apply cosine law
[tex]BC^2 = AB^2 + AC^2 - 2*AB*AC*cosA[/tex]
[tex]BC^2 = 29^2 + 24^2 - 2*29*24*cos(43^{\circ})[/tex]
[tex]BC^2 = 841+ 576 - 1392*cos(43^{\circ})[/tex]
[tex]BC^2 = 841+ 576 - 1392*0.7314[/tex]
[tex]BC^2 = 841+ 576 - 1018.11[/tex]
[tex]BC^2 = 398.89[/tex]
Take the square root of both sides
[tex]BC = \sqrt{398.89[/tex]
[tex]BC = 19.9722307217[/tex]
[tex]BC = 20[/tex]
![Ver imagen MrRoyal](https://us-static.z-dn.net/files/d6a/6396f9886478eaf56abc462294a7af5b.jpg)