Answer:
Explanation:
Given that:
The conductivity of the material [tex]\sigma[/tex] = 5.0 s/m
[tex]The \ relative \ permittivity \ of \ the \ material[/tex] [tex]{\varepsilon_r} = 1[/tex] ; &
The electric field intensity of the material E = 250 sin(10¹⁰ t) V/m
(a) The conduction current density [tex]( J_c) = \sigma E[/tex]
[tex]= 5.0 \times 250 \ sin ( 10^{10} \ t )[/tex]
[tex]\mathbf{ = 1250 \ sin (10 ^{10} t ) \ A/m^2 }[/tex]
(b) Displacement current density [tex](J_d) = \varepsilon _d * \dfrac{\delta E}{\delta t}[/tex]
Recall that:
[tex]\varepsilon _o = 8.854 \times 10^{-12}[/tex]
∴
[tex](J_d) = 8.854 \times 10^{-12} \times \dfrac{d}{dt} \times (250 \ sin \ (10^{10} \ t))[/tex]
[tex](J_d) = 8.854 \times 10^{-12} \times 250 \times 10^{10} \times \ cos \ (10^{10} \ t)[/tex]
[tex](J_d) = 22.135 \ cos \ 10^{10} \ t \ A/m^2[/tex]
(c) The frequency at which [tex]J_c \ and \ J_d[/tex] will have the same magnitude is:
[tex]f = \dfrac{\sigma}{2 \pi \varepsilon_o \varepsilon_r}[/tex]
By substitution
[tex]f = 18 \times 10^9 \times \dfrac{\sigma }{\varepsilon_r}[/tex]
[tex]f = 18\times 10^9 \times \dfrac{5}{1 }[/tex]
f = 90 GHz