Question:
Find the missing x- and y-values and Pythagorean triples using the identity given
[tex](x\²-y\²)\² + (2xy)\² = (x\²+y\²)\²[/tex]
[tex]x = 4[/tex]
[tex]y = 3[/tex]
Pythagorean Triples:
Write the triples in parentheses with commas but no spaces between the values, and order the values from least to greatest.
Answer:
Pythagorean triples is: (7, 24, 25)
Step-by-step explanation:
Pythagorean triples is expressed as:
[tex]a^2 + b^2 = c^2[/tex]
In [tex](x\²-y\²)\² + (2xy)\² = (x\²+y\²)\²[/tex]
[tex]a^2= (x^2 -y^2)^2[/tex]
Take square root of both sides
[tex]a = x^2 - y^2[/tex]
[tex]b^2 = (2xy)^2[/tex]
Take square root of both sides
[tex]b = 2xy[/tex]
[tex]c^2 = (x^2 + y^2)^2[/tex]
Take square root of both sides
[tex]c = x^2 + y^2[/tex]
So, we have:
[tex]x = 4[/tex]
[tex]y = 3[/tex]
Pythagorean Triples: ?
[tex]a = x^2 - y^2[/tex]
[tex]a = 4^2 - 3^2[/tex]
[tex]a = 16 - 9[/tex]
[tex]a = 7[/tex]
[tex]b = 2xy[/tex]
[tex]b = 2 * 4 * 3[/tex]
[tex]b = 24[/tex]
[tex]c = x^2 + y^2[/tex]
[tex]c = 4^2 + 3^2[/tex]
[tex]c = 16 + 9[/tex]
[tex]c= 25[/tex]
Hence, the Pythagorean triples is: (7, 24, 25)