Answer:
See proof below
Step-by-step explanation
cot^2(x) - csc^2(x) = -1
In trigonometry identity
cot^2x = cos²x/sin²x
Csc²x = 1/sin²x
Substitute into the original expression
cos²x/sin²x - 1/sin²x
Find the LCM
(Cos²x-1)/sin²x .... *
Recall that sin²x+cos²x = 1
Sin²x = 1-cos²x
-sin²x = -1+cos²x
-sin²x = cos²x-1 .... **
Substitute ** into *
(Cos²x-1)/sin²x
-sin²x/sin²x
= -1 (RHS)
Therefore cot^2(x) - csc^2(x) = -1 (Proved!)