The isosceles triangle ΔDBC have equal base angles.
The measure of angle C is 30 degrees
ΔADB is an equilateral triangle.
So, we have:
[tex]\mathbf{\angle ADC = \angle BAD = \angle DBA = 60}[/tex]
Next, we calculate [tex]\mathbf{\angle DBC}[/tex]
[tex]\mathbf{\angle DBC =180 - \angle DBA}[/tex] -- angle on a straight line
So, we have:
[tex]\mathbf{\angle DBC =180 - 60}[/tex]
[tex]\mathbf{\angle DBC =120}[/tex]
ΔDBC is an isosceles triangle.
So, we have:
[tex]\mathbf{\angle C = \angle D}[/tex]
This is then calculated as:
[tex]\mathbf{\angle C + \angle C = 180 - 120}[/tex]
[tex]\mathbf{2\angle C = 60}[/tex]
Divide both sides by 2
[tex]\mathbf{\angle C = 30}[/tex]
Hence, the measure of angle C is 30 degrees
Read more about triangles at:
https://brainly.com/question/2456591