Find the value(s) of c guaranteed by the Mean Value Theorem for Integrals for the function over the given interval. y = x²/4, [0, 6] (Enter your answers as a comma-separated list.) f(x)

Respuesta :

Answer:

[tex]c =2 \sqrt{3}[/tex]

Step-by-step explanation:

Using Mean Value Theorem for integrals

[tex]\int^b_a \ f(x) \ dx = f(c) (b-a)[/tex]

[tex]f(x) = y = \dfrac{x^2}{4}, [0,6][/tex]

Hence;

[tex]\int^b_a \ f(x) \ dx = f(c) (b-a)= \int^6_0 \dfrac{x^2}{4}dx = f(c) (6-0)[/tex]

From above, using the power rule for integration

Then;

[tex]\int x^n dx = \dfrac{x^{n+1}}{x+1}+C[/tex]

Thus;

[tex]f(c)(6) = \Big[ \dfrac{x^3}{3(4)} \Big]^6_0[/tex]

[tex]6f(c) =\Big[ \dfrac{x^3}{12} \Big]^6_0 = (\dfrac{6^3}{12}-0)[/tex]

[tex]6f(c) = (18-0)[/tex]

[tex]6f(c) = (18)[/tex]

[tex]f(c) = 3[/tex]

From;

[tex]f(x) = \dfrac{x^2}{4} \implies f(c) = \dfrac{c^2}{4}[/tex]

Hence,

[tex]\dfrac{c^2}{4}= 3[/tex]

[tex]c^2 =12[/tex]

[tex]c = \sqrt{12}[/tex]

[tex]c = \sqrt{4 \times 3}[/tex]

[tex]c =2 \sqrt{3}[/tex]

ACCESS MORE