Respuesta :
Answer:
The area under the curve is of 42.67 area units.
Step-by-step explanation:
Using the Fundamental Theorem of Calculus, the area under a curve f(x), between [tex]x = a[/tex] and [tex]x = b[/tex], is given by:
[tex]A = \int_{a}^{b} f(x) dx[/tex]
In this question, we have that:
[tex]f(x) = -x^2 + 7x[/tex], from 1 to 5. So
[tex]A = \int_{a}^{b} f(x) dx[/tex]
[tex]A = \int_{1}^{5} (-x^2 + 7x) dx[/tex]
[tex]A = -\frac{x^3}{3} + \frac{7x^2}{2}|_1^{5}[/tex]
[tex]A = -\frac{5^3}{3} + \frac{7*5^2}{2} + \frac{1^3}{3} - \frac{7*1^2}{2}[/tex]
[tex]A = -\frac{124}{3} + \frac{168}{2}[/tex]
[tex]A = -\frac{124}{3} + 84[/tex]
[tex]A = -\frac{124}{3} + \frac{252}{3}[/tex]
[tex]A = \frac{128}{3}[/tex]
[tex]A = 42.67[/tex]
The area under the curve is of 42.67 area units.
The area under the curve is 42.67 square unit.
Area under curve measures the entire two-dimensional area underneath the entire region of curve.
Area under the curve of f(x), from x = a to x = b is given by,
[tex]Area=\int\limits^b_a {f(x)} \, dx[/tex]
Here given that, [tex]f(x)=-x^{2} +7x[/tex] and [tex]a=1,b=5[/tex]
Substituting above values in Area integral expression.
[tex]Area=\int\limits^5_1 {(-x^{2}+7x) } \, dx \\\\Area = -\frac{x^{3} }{3}+\frac{7}{2}x^{2}[/tex]
Substituting the limit of integration.
[tex]Area=(-\frac{125}{3}+\frac{175}{2} )-(-\frac{1}{3}+\frac{7}{2} )\\\\Area = (-\frac{125}{3}+\frac{1}{3} )+(\frac{175}{2} -\frac{7}{2} )\\\\Area=42.67unit^{2}[/tex]
Thus, the area under the curve is 42.67 square unit.
Learn more:
https://brainly.com/question/23207343