Answer:
The directional derivate is given by: [tex]D_{u}(x,y) = \frac{6}{\ln{17}\sqrt{10}}[/tex]
Step-by-step explanation:
The directional derivative at point (x,y) is given by:
[tex]D_{u}(x,y) = f_{x}(x,y)*a + f_{y}(x,y)*b[/tex]
In which a is the x component of the unit vector and b is the y component of the unit vector.
Vector:
We are given the following vector: [tex]v = (3,1)[/tex]
Its modulus is given by: [tex]\sqrt{3^2 + 1^2} = \sqrt{10}[/tex]
The unit vector is given by each component divided by it's modulus. So
[tex]v_u = (\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}})[/tex]
This means that [tex]a = \frac{3}{\sqrt{10}}, b = \frac{1}{\sqrt{10}}[/tex]
Partial derivatives:
[tex]f(x,y) = \ln{(2 + 3x^2 + 3y^2)}[/tex]
So
[tex]f_x(x,y) = \frac{6x}{\ln{(2 + 3x^2 + 3y^2)}}[/tex]
[tex]f_x(1,-2) = \frac{6(1)}{\ln{(2 + 3(1)^2 + 3(-2)^2)}} = \frac{6}{\ln{17}}[/tex]
[tex]f_y(x,y) = \frac{6y}{\ln{(2 + 3x^2 + 3y^2)}}[/tex]
[tex]f_y(1,-2) = \frac{6(-2)}{\ln{(2 + 3(1)^2 + 3(-2)^2)}} = -\frac{12}{\ln{17}}[/tex]
Directional derivative:
[tex]D_{u}(x,y) = f_{x}(x,y)*a + f_{y}(x,y)*b[/tex]
[tex]D_{u}(x,y) = \frac{6}{\ln{17}}\times\frac{3}{\sqrt{10}}-\frac{12}{\ln{17}}\times\frac{1}{\sqrt{10}}[/tex]
[tex]D_{u}(x,y) = \frac{18}{\ln{17}\sqrt{10}} - \frac{12}{\ln{17}\sqrt{10}}[tex]
[tex]D_{u}(x,y) = \frac{6}{\ln{17}\sqrt{10}}[/tex]
The directional derivate is given by: [tex]D_{u}(x,y) = \frac{6}{\ln{17}\sqrt{10}}[/tex]