Answer:
1)The rocket hit the ground at [tex]x = \frac{5}{4}[/tex]
2)The maximum height of the rocket = 12.468 feet
Step-by-step explanation:
Step(i):-
Given equation
y = -2 x² + 5 x + 7 ...(i)
Differentiating equation (i) with respective to 'x' , we get
[tex]\frac{dy}{dx} = -2( 2x) +5(1) = -4x +5[/tex]
Equating zero
[tex]\frac{dy}{dx} = 0[/tex]
⇒ -4 x +5 =0
⇒ -4 x = -5
⇒ [tex]x = \frac{5}{4}[/tex]
The rocket hit the ground at [tex]x = \frac{5}{4}[/tex]
Step(ii):-
[tex]\frac{dy}{dx} = -4x +5[/tex] ...(ii)
Again differentiating equation (ii) with respective to 'x' , we get
[tex]\frac{d^{2} y}{dx^{2} } = - 4(1) <0[/tex]
The maximum height at x = [tex]\frac{-5}{4}[/tex]
y = -2 x² + 5 x + 7
[tex]y = -2 (\frac{5}{4})^{2} + 5 (\frac{5}{4} ) + 7[/tex]
[tex]y = \frac{-2(25)+ 25 (16)+7(64)}{64}[/tex]
[tex]y = \frac{798}{64} = 12.468 feet[/tex]
The maximum height of the rocket = 12.468 feet