Find the average rate of change of the function over the given interval.
Upper R (theta )equals StartRoot 4 theta plus 1 EndRoot​;​[2​,12​]

Respuesta :

Answer:

The average rate of change of the function over the given interval is of 0.4.

Step-by-step explanation:

The average rate of change of a function f(x) over an interval [a,b] is given by:

[tex]A = \frac{f(b) - f(a)}{b-a}[/tex]

In this question:

The function is [tex]R(\theta) = \sqrt{4\theta + 1}[/tex], in the interval [2,12]. So

[tex]R(12) = \sqrt{4(12)+1} = \sqrt{49} = 7[/tex]

[tex]R(2) = \sqrt{4(2)+1} = \sqrt{9} = 3[/tex]

[tex]A = \frac{7-3}{12-2} = \frac{4}{10} = 0.4[/tex]

The average rate of change of the function over the given interval is of 0.4.

RELAXING NOICE
Relax