Answer:
The average rate of change of the function over the given interval is of 0.4.
Step-by-step explanation:
The average rate of change of a function f(x) over an interval [a,b] is given by:
[tex]A = \frac{f(b) - f(a)}{b-a}[/tex]
In this question:
The function is [tex]R(\theta) = \sqrt{4\theta + 1}[/tex], in the interval [2,12]. So
[tex]R(12) = \sqrt{4(12)+1} = \sqrt{49} = 7[/tex]
[tex]R(2) = \sqrt{4(2)+1} = \sqrt{9} = 3[/tex]
[tex]A = \frac{7-3}{12-2} = \frac{4}{10} = 0.4[/tex]
The average rate of change of the function over the given interval is of 0.4.