Respuesta :

Answer:

Step-by-step explanation:

Answer is C

The expression which defines series is [tex]S_{n}=3(\frac{1}{2}^{n} )[/tex]

To understand more, check the below explanation.

Sum series:

The given series is,

                   [tex]\frac{3}{2} +\frac{3}{4} +\frac{3}{8} +\frac{3}{16} +.......[/tex]

We have to find equivalent series.

           [tex]\frac{3}{2} +\frac{3}{4} +\frac{3}{8} +\frac{3}{16} +.......\\\\=3(\frac{1}{2} +\frac{1}{4} +\frac{1}{8} +\frac{1}{16} +.......)\\\\=3(\frac{1}{2^{1} } +\frac{1}{2^{2} } +\frac{1}{2^{3} }+\frac{1}{2^{4} } +.......)\\\\S_{n}=3(\frac{1}{2}^{n} )[/tex]

Hence, the expression which defines series is [tex]S_{n}=3(\frac{1}{2}^{n} )[/tex].

Learn more about the series and sequence here:

https://brainly.com/question/24295771

ACCESS MORE