Consider the series. What expression defines Sn
![Consider the series What expression defines Sn class=](https://us-static.z-dn.net/files/df0/5a2f7eb2441c20766ae83bad02d2cc44.jpg)
The expression which defines series is [tex]S_{n}=3(\frac{1}{2}^{n} )[/tex]
To understand more, check the below explanation.
The given series is,
[tex]\frac{3}{2} +\frac{3}{4} +\frac{3}{8} +\frac{3}{16} +.......[/tex]
We have to find equivalent series.
[tex]\frac{3}{2} +\frac{3}{4} +\frac{3}{8} +\frac{3}{16} +.......\\\\=3(\frac{1}{2} +\frac{1}{4} +\frac{1}{8} +\frac{1}{16} +.......)\\\\=3(\frac{1}{2^{1} } +\frac{1}{2^{2} } +\frac{1}{2^{3} }+\frac{1}{2^{4} } +.......)\\\\S_{n}=3(\frac{1}{2}^{n} )[/tex]
Hence, the expression which defines series is [tex]S_{n}=3(\frac{1}{2}^{n} )[/tex].
Learn more about the series and sequence here:
https://brainly.com/question/24295771