Respuesta :

Answer:

We conclude that:

[tex]\sqrt[5]{8^3}=8^{\frac{3}{5}}[/tex]

Step-by-step explanation:

Given

We are given the expression

[tex]\sqrt[5]{8^3}[/tex]

To determine

Solve using fractional law exponent rule

Given the expression

[tex]\sqrt[5]{8^3}[/tex]

Apply radical rule:  [tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]

[tex]\sqrt[5]{8^3}=\left(8^3\right)^{\frac{1}{5}}[/tex]

Apply exponent rule:  [tex]\left(a^b\right)^c=a^{bc}[/tex]

       [tex]=8^{3\cdot \frac{1}{5}}[/tex]

Multiply the exponent:  3 × 1/5 = 3/5

     [tex]=8^{\frac{3}{5}}[/tex]

Therefore, we conclude that:

[tex]\sqrt[5]{8^3}=8^{\frac{3}{5}}[/tex]

ACCESS MORE