Answer:
Step-by-step explanation:
Assume that the [tex]20[/tex] mile-per-gallon car consumed all that [tex]75[/tex] gallons of fuel. How far would the cars have travelled?
[tex]20 \times 75 = 1500\; \text{miles}[/tex].
This assumption overestimated the total mileage of the two cars by [tex]1500 - 1325 = 175\; \text{miles}[/tex]. Here's why: for every gallon that the second ([tex]15[/tex] mile-per-gallon) car consumed, this assumption would overestimate the total mileage by [tex]20 - 15 = 5\; \text{miles}[/tex]. Therefore, the overestimation of [tex]175\; \text{miles}[/tex] corresponds to:
[tex]\begin{aligned} & 175\; \text{miles overestimated} \\ & \times \left(\frac{1\; \text{gallon consumed by the second car}}{5\; \text{miles overestimated}}\right)\\ &= \frac{175}{5}\; \text{gallons consumed by the second car} \\ &= 35\; \text{gallons consumed by the second car}\end{aligned}[/tex].
Therefore, the second car consumed [tex]35\; \text{gallons}[/tex]. The first car would have consumed [tex]75 - 35 = 40\; \text{gallons}[/tex].
Verify the results: [tex]40 \times 20 + 35\times 15 = 1325\; \text{miles}[/tex].