1.2.
Prove the following the trigonometric identity step-by-step
1.2.1 sin theta/sin theta+cos theta=tan theta/1+tan theta​

Respuesta :

Answer:

The identity is proved below.

Step-by-step explanation:

The tangent of an angle [tex]\theta[/tex] is given by:

[tex]\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}[/tex]

In this question, we are given the following trigonometric identity:

[tex]\frac{\sin{\theta}}{\sin{\theta}+\cos{\theta}} = \frac{\tan{\theta}}{1+\tan{\theta}}[/tex]

Applying the tangent

[tex]\frac{\sin{\theta}}{\sin{\theta}+\cos{\theta}} = \frac{\frac{\sin{\theta}}{\cos{\theta}}}{1+\frac{\sin{\theta}}{\cos{\theta}}}[/tex]

Now, we apply the least common multiple on the denominator. So

[tex]\frac{\sin{\theta}}{\sin{\theta}+\cos{\theta}} = \frac{\frac{\sin{\theta}}{\cos{\theta}}}{\frac{\cos{\theta}+\sin{\theta}}{\cos{\theta}}}[/tex]

SImplifying the cosine:

[tex]\frac{\sin{\theta}}{\sin{\theta}+\cos{\theta}} = \frac{\sin{\theta}}{\sin{\theta}+\cos{\theta}}[/tex]

Which means that the identity is proved.

ACCESS MORE