Respuesta :

Given:

The function is [tex]f(f(x))=x^2-1[/tex].

To find:

The value of f(f(f(f(3)))).

Solution:

We have,

[tex]f(f(x))=x^2-1[/tex]

Now,

[tex]f(f(f(f(x)))=(f(f(x)))^2-1[/tex]

[tex]f(f(f(f(x)))=(x^2-1)^2-1[/tex]

Putting x=3, we get

[tex]f(f(f(f(3)))=((3)^2-1)^2-1[/tex]

[tex]f(f(f(f(3)))=(9-1)^2-1[/tex]

[tex]f(f(f(f(3)))=(8)^2-1[/tex]

[tex]f(f(f(f(3)))=64-1[/tex]

[tex]f(f(f(f(3)))=63[/tex]

Therefore, the value of f(f(f(f(3)))) is 63.

Otras preguntas

ACCESS MORE