Answer:
The sum of the first 660 terms in the sequence=−1512390
Step-by-step explanation:
We are given that an arithmetic sequence
[tex]a_1=15[/tex]
[tex]a_{i}=a_{i-1}-7[/tex]
We have to find the sum of first 660 terms
Substitute i=2
[tex]a_2=a_1-7=15-7=8[/tex]
Substitute i=3
[tex]a_3=a_2-7=8-7=1[/tex]
Now, the common difference
[tex]d=a_2-a_1=8-15=-7[/tex]
Now, sum of n terms of an A.P
[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]
Substitute n=660, d=-7, a=15
[tex]S_{660}=\frac{660}{2}(30+(660-1)(-7))[/tex]
[tex]S_{660}=-1512390[/tex]
Hence, the sum of the first 660 terms in the sequence=−1512390