Respuesta :

Answer:

The sum of the first 660 terms in the sequence=−1512390

Step-by-step explanation:

We are given that an arithmetic sequence

[tex]a_1=15[/tex]

[tex]a_{i}=a_{i-1}-7[/tex]

We have to find the sum of first 660 terms

Substitute i=2

[tex]a_2=a_1-7=15-7=8[/tex]

Substitute i=3

[tex]a_3=a_2-7=8-7=1[/tex]

Now, the common difference

[tex]d=a_2-a_1=8-15=-7[/tex]

Now, sum of n terms of an A.P

[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]

Substitute n=660, d=-7, a=15

[tex]S_{660}=\frac{660}{2}(30+(660-1)(-7))[/tex]

[tex]S_{660}=-1512390[/tex]

Hence, the sum of the first 660 terms in the sequence=−1512390

ACCESS MORE