Respuesta :
Answer:
[tex]\theta=79.7^{\circ}[/tex]
Step-by-step explanation:
Given that,
v = 2i - j and w = 3i + 4j
We need to find the angle between v and w.
Magnitude of |v|, [tex]|v|=\sqrt{2^2+(-1)^2} =\sqrt5[/tex]
Magnitude of |w|, [tex]|w|=\sqrt{3^2+4^2} =5[/tex]
The dot product of v and w,
[tex]u{\cdot}w=2(3)+(-1)4\\\\=2[/tex]
The formula for the dot product is given by :
[tex]u{\cdot}w=|u||w|\cos\theta\\\\\cos\theta=\dfrac{u{\cdot}w}{|u||w|}\\\\=\dfrac{2}{\sqrt5\times 5}\\\\\theta=\cos^{-1}(\dfrac{2}{\sqrt5\times 5})\\\\\theta=79.69^{\circ}\\\\=79.7^{\circ}[/tex]
So, the angle between u and v is [tex]79.7^{\circ}[/tex].
Answer:
The angle between two vectors
[tex]\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )[/tex]
∝ = 79.700°
Step-by-step explanation:
Explanation
Given V = 2i - j and w = 3 i + 4 j
Let '∝' be the angle between the two vectors
[tex]cos \alpha = \frac{v^{-} .w^{-} }{|v||w|}[/tex]
[tex]cos \alpha = \frac{(2i-j).(3i+4j) }{\sqrt{2^{2}+1^{2} )\sqrt{3^{2} +4^{2} } } }[/tex]
[tex]cos \alpha = \frac{(2(3)-4(1) }{\sqrt{5 )\sqrt{25 } } } = \frac{2}{\sqrt{5})5 } = \frac{2}{5\sqrt{5} }[/tex]
[tex]cos\alpha = \frac{2}{5\sqrt{5} } \\\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )[/tex]
The angle between two vectors
∝ = 79.77°