Respuesta :

Answer:

[tex]\theta=79.7^{\circ}[/tex]

Step-by-step explanation:

Given that,

v = 2i - j and w = 3i + 4j

We need to find the angle between v and w.

Magnitude of |v|, [tex]|v|=\sqrt{2^2+(-1)^2} =\sqrt5[/tex]

Magnitude of |w|, [tex]|w|=\sqrt{3^2+4^2} =5[/tex]

The dot product of v and w,

[tex]u{\cdot}w=2(3)+(-1)4\\\\=2[/tex]

The formula for the dot product is given by :

[tex]u{\cdot}w=|u||w|\cos\theta\\\\\cos\theta=\dfrac{u{\cdot}w}{|u||w|}\\\\=\dfrac{2}{\sqrt5\times 5}\\\\\theta=\cos^{-1}(\dfrac{2}{\sqrt5\times 5})\\\\\theta=79.69^{\circ}\\\\=79.7^{\circ}[/tex]

So, the angle between u and v is [tex]79.7^{\circ}[/tex].

Answer:

The angle between two vectors

 [tex]\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )[/tex]

  ∝ = 79.700°

Step-by-step explanation:

Explanation

Given V =  2i - j and w = 3 i + 4 j

Let '∝' be the angle between the two vectors

           [tex]cos \alpha = \frac{v^{-} .w^{-} }{|v||w|}[/tex]

         [tex]cos \alpha = \frac{(2i-j).(3i+4j) }{\sqrt{2^{2}+1^{2} )\sqrt{3^{2} +4^{2} } } }[/tex]

        [tex]cos \alpha = \frac{(2(3)-4(1) }{\sqrt{5 )\sqrt{25 } } } = \frac{2}{\sqrt{5})5 } = \frac{2}{5\sqrt{5} }[/tex]

          [tex]cos\alpha = \frac{2}{5\sqrt{5} } \\\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )[/tex]

 The angle between two vectors

        ∝ = 79.77°

ACCESS MORE