contestada

y is inversely proportional to the square of x.
y = 8 when x = 3.5
8
Find the negative value of x when y= 8/9

Respuesta :

Step-by-step explanation:

x²y = k, where k is a real constant.

When x = 3.5, y = 8.

=> (3.5)²(8) = k, k = 98.

When y = 8/9,

we have x²(8/9) = (98).

=> x² = 110.25

=> x = 10.5 or x = -10.5.

Since we want the negative value,

the answer is x = -10.5.

The required negative value of variable x when y = 8/9 is -10.5. To understand the calculations, check below.

Proportion:

Important information:

  • y is inversely proportional to the square of x.
  • y=8 when x=3.5.

Using the given inverse proportional statement, we get

[tex]y\propto \dfrac{1}{x^2}[/tex]

[tex]y=\dfrac{k}{x^2}[/tex]     ...(i)

Substitute [tex]x=3.5,y=8[/tex].

[tex]8=\dfrac{k}{3.5^2}[/tex]

[tex]8=\dfrac{k}{12.25}[/tex]

[tex]8\times 12.25=k[/tex]

[tex]98=k[/tex]

Substitute [tex]k=98[/tex] in (i).

[tex]y=\dfrac{98}{x^2}[/tex]

Substitute [tex]y=\dfrac{8}{9}[/tex].

[tex]\dfrac{8}{9}=\dfrac{98}{x^2}[/tex]

[tex]x^2=98\times \dfrac{9}{8}[/tex]

[tex]x^2=110.25[/tex]

[tex]x=\pm \sqrt{110.25}[/tex]

[tex]x=\pm 10.5[/tex]

We need only negative value.

[tex]x=-10.5[/tex]

Therefore, the required value of variable x is -10.5.

Find out more about 'Proportion' here:

https://brainly.com/question/15179946

ACCESS MORE