Respuesta :
Step-by-step explanation:
x²y = k, where k is a real constant.
When x = 3.5, y = 8.
=> (3.5)²(8) = k, k = 98.
When y = 8/9,
we have x²(8/9) = (98).
=> x² = 110.25
=> x = 10.5 or x = -10.5.
Since we want the negative value,
the answer is x = -10.5.
The required negative value of variable x when y = 8/9 is -10.5. To understand the calculations, check below.
Proportion:
Important information:
- y is inversely proportional to the square of x.
- y=8 when x=3.5.
Using the given inverse proportional statement, we get
[tex]y\propto \dfrac{1}{x^2}[/tex]
[tex]y=\dfrac{k}{x^2}[/tex] ...(i)
Substitute [tex]x=3.5,y=8[/tex].
[tex]8=\dfrac{k}{3.5^2}[/tex]
[tex]8=\dfrac{k}{12.25}[/tex]
[tex]8\times 12.25=k[/tex]
[tex]98=k[/tex]
Substitute [tex]k=98[/tex] in (i).
[tex]y=\dfrac{98}{x^2}[/tex]
Substitute [tex]y=\dfrac{8}{9}[/tex].
[tex]\dfrac{8}{9}=\dfrac{98}{x^2}[/tex]
[tex]x^2=98\times \dfrac{9}{8}[/tex]
[tex]x^2=110.25[/tex]
[tex]x=\pm \sqrt{110.25}[/tex]
[tex]x=\pm 10.5[/tex]
We need only negative value.
[tex]x=-10.5[/tex]
Therefore, the required value of variable x is -10.5.
Find out more about 'Proportion' here:
https://brainly.com/question/15179946