contestada

[tex]f =(x) = \frac{x}{4} [/tex]
[tex]fg (x) = \frac{1}{2x + 1} [/tex]
Find g(x)

texf x fracx4 textexfg x frac12x 1 texFind gx class=

Respuesta :

Answer:

g(x) = [tex]\frac{x+3}{x-3}[/tex]

Step-by-step explanation:

From the picture attached,

Given function is,

f(x) = x + 1

We have to find the value of g(x) if the composite function has been given as,

f[g(x)] = g(x) + 1 = [tex]\frac{2x}{(x-3)}[/tex]

g(x) = [tex]\frac{2x}{(x-3)}-1[/tex]

      = [tex]\frac{2x-(x-3)}{(x-3)}[/tex]

      = [tex]\frac{(x+3)}{(x-3)}[/tex]

Therefore, g(x) = [tex]\frac{x+3}{x-3}[/tex] will be the answer.

ACCESS MORE