Answer:
[tex]V = 473.9cm^3[/tex]
Step-by-step explanation:
Given
[tex]V = \sqrt{\frac{4s^3}{243\pi}}[/tex]
Required
Find V, when s = 350
Substitute 350 for s in
[tex]V = \sqrt{\frac{4s^3}{243\pi}}[/tex]
[tex]V = \sqrt{\frac{4 * 350^3}{243\pi}}[/tex]
[tex]V = \sqrt{\frac{171500000}{243\pi}}[/tex]
Take: [tex]\pi = \frac{22}{7}[/tex]
So, we have:
[tex]V = \sqrt{\frac{171500000}{243 * \frac{22}{7}}}[/tex]
[tex]V = \sqrt{\frac{171500000*7}{243 * 22}}[/tex]
[tex]V = \sqrt{\frac{1200500000}{5346}}[/tex]
[tex]V = \sqrt{224560.419005}[/tex]
[tex]V = 473.878063435[/tex]
[tex]V = 473.9cm^3[/tex] --- approximated