Answer:
D. y = x - 3
Step-by-step explanation:
First, find the slope (m) of the line it is perpendicular to using the points of the line, (4, 2) and (-1, 7):
[tex] slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 2}{-1 - 4} = \frac{5}{-5} = -1 [/tex]
Thus, the slope (m) of the line that is perpendicular to the line that runs through (4, 2) and (-1, 7) would be the negative reciprocal of -1.
The slope (m) if the line that is perpendicular to the other line = 1
Thus, substitute m = 1 and (a, b) = (1, -2) into y - b = m(x - a)
y - (-2) = 1(x - 1)
y + 2 = x - 1
Subtract 2 from both sides
y = x - 1 - 2
y = x - 3