Respuesta :

Answer:

[tex]x = 10[/tex]

Step-by-step explanation:

Given

[tex]AB = 8[/tex]

[tex]AC = x[/tex]

[tex]QR = 12[/tex]

[tex]QS = 15[/tex]

Required

Find x

Because both triangles are similar, we have:

[tex]AB : AC = QR : QS[/tex] --- Equivalent ratios

This gives:

[tex]8 : x = 12 : 15[/tex]

Convert to fraction

[tex]\frac{8}{x} = \frac{12}{15}[/tex]

Cross Multiply:

[tex]12 * x = 8* 15[/tex]

[tex]12x = 120[/tex]

Divide both sides by 12

[tex]x = \frac{120}{12}[/tex]

[tex]x = 10[/tex]

ACCESS MORE