PLEASE HURRY Which equation could generate the curve in the graph below? On a coordinate plane, a parabola is in quadrant 2 and opens up. The vertex is on the x-axis. y = 9x2 + 6x + 4 y = 6x2 – 12x – 6 y = 3x2 + 7x + 5 y = 2x2 + 8x + 8

Respuesta :

Answer:

is D

Step-by-step explanation:

The equation that could represent the graph of the parabola is (d) [tex]y = 2x^2 + 8x + 8[/tex]

From the question, we have the following highlights

  • The parabola opens up
  • The vertex is on the x-axis

The highlights above mean that: the y-coordinate (k) of the vertex is positive.

For a parabola: [tex]y = ax^2 + bx + c[/tex], the vertex is:

[tex](h,k) = (-\frac{b}{2a},f(h))[/tex]

Next, we test the options

(a) y = 9x2 + 6x + 4

We have:

[tex]h = -\frac{6}{2 \times 9}[/tex]

[tex]h = -\frac{1}{3}[/tex]

Substitute -1/3 for x in the function

[tex]y = 9x^2 + 6x + 4[/tex]

[tex]k = 9(1/3)^2 + 6(1/3) + 4[/tex]

[tex]k = 7[/tex]

The value of k is not zero.

So, this cannot represent the parabola

(b) y = 6x2 – 12x – 6

We have:

[tex]h = -\frac{-12}{2\times 6}[/tex]

[tex]h = 1[/tex]

Substitute 1 for x in the function

[tex]y = 6x^2 - 12x - 6[/tex]

[tex]k = 6(1)^2 - 12(1) - 6[/tex]

[tex]k = -12[/tex]

The value of k is not zero.

So, this cannot represent the parabola

(c) y = 3x2 + 7x + 5

We have:

[tex]h = -\frac{7}{2\times 3}[/tex]

[tex]h = -\frac{7}{6}[/tex]

Substitute -7/6 for x in the function

[tex]y = 3x^2 + 7x + 5[/tex]

[tex]k = 3(-7/6)^2 + 7(-7/6) + 5[/tex]

[tex]k = 0.92[/tex]

The value of k is not zero.

So, this cannot represent the parabola

(b) y = 2x2 + 8x + 8

We have:

[tex]h = -\frac{8}{2\times 2}[/tex]

[tex]h = -2[/tex]

Substitute -2 for x in the function

[tex]y = 2x^2 + 8x + 8[/tex]

[tex]k = 2(-2)^2 + 8(-2) + 8[/tex]

[tex]k = 0[/tex]

The y-coordinate (k) is zero.

Hence, [tex]y = 2x^2 + 8x + 8[/tex] could represent the parabola

Read more about parabola at:

https://brainly.com/question/17987697

ACCESS MORE