Answer:
[tex]V=1152[/tex]
Step-by-step explanation:
Given that,
The base of the object is a circle whose radius is 6.
i.e [tex]x^2+y^2=36[/tex]
[tex]\Rightarrow y^2=36-x^2\\\Rightarrow y=\sqrt{36-x^2}[/tex]
Now, Volume [tex]=\int\limits^6_{-6} ({2\sqrt{36-x^2})^2} \, dx[/tex] [tex][\because \text{one side of square}=2\sqrt{36-x^2} \\ \quad \quad A=S^2=(2\sqrt{36-x^2})^2 ][/tex]
[tex]\Rightarrow V=\int\limits^6_{-6} {4(36-x^2)} \, dx[/tex]
[tex]\Rightarrow V=\int\limits^6_{-6} {(144-4x^2)} \, dx[/tex]
[tex]\Rightarrow V=[144x-\frac{4x^3}{3}]^6_{-6} \, dx[/tex]
[tex]=(864-288)-(-864+288)[/tex]
[tex]=576+576[/tex]
[tex]=1152[/tex]
[tex]\Rightarrow V=1152[/tex]