Compute the volume of an object if its base is a circle with radius 6 and cross sections perpendicular to the base are squares. Enter the exact value of the answer.

Respuesta :

Answer:

[tex]V=1152[/tex]

Step-by-step explanation:

Given that,

   The base of the object is a circle whose radius is 6.

     i.e   [tex]x^2+y^2=36[/tex]

         [tex]\Rightarrow y^2=36-x^2\\\Rightarrow y=\sqrt{36-x^2}[/tex]

Now, Volume [tex]=\int\limits^6_{-6} ({2\sqrt{36-x^2})^2} \, dx[/tex]        [tex][\because \text{one side of square}=2\sqrt{36-x^2} \\ \quad \quad A=S^2=(2\sqrt{36-x^2})^2 ][/tex]

               [tex]\Rightarrow V=\int\limits^6_{-6} {4(36-x^2)} \, dx[/tex]

               [tex]\Rightarrow V=\int\limits^6_{-6} {(144-4x^2)} \, dx[/tex]

                [tex]\Rightarrow V=[144x-\frac{4x^3}{3}]^6_{-6} \, dx[/tex]

                         [tex]=(864-288)-(-864+288)[/tex]

                         [tex]=576+576[/tex]

                         [tex]=1152[/tex]

                 [tex]\Rightarrow V=1152[/tex]

                   

ACCESS MORE