Respuesta :

Given:

The line segment AB is divided by point P in the ratio of 1:4.

Point A is (7,5) and point P is (10,14).

To find:

The coordinates of point B.

Solution:

Let the coordinates of point B are (a,b).

Section formula: If a point divide a line segment in m:n, then the coordinates of that point are

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

The line segment AB is divided by point P in the ratio of 1:4.

Using section formula, we get

[tex]P=\left(\dfrac{1(a)+4(7)}{1+4},\dfrac{1(b)+4(5)}{1+4}\right)[/tex]

[tex](10,14)=\left(\dfrac{a+28}{5},\dfrac{b+20}{5}\right)[/tex]

Comparing the coordinates on both sides, we get

[tex]\dfrac{a+28}{5}=10[/tex]

[tex]a+28=50[/tex]

[tex]a=50-28[/tex]

[tex]a=22[/tex]

And,

[tex]\dfrac{b+20}{5}=14[/tex]

[tex]b+20=70[/tex]

[tex]b=70-20[/tex]

[tex]b=50[/tex]

Therefore, the coordinates of point B are (22,50).