Given:
The line segment AB is divided by point P in the ratio of 1:4.
Point A is (7,5) and point P is (10,14).
To find:
The coordinates of point B.
Solution:
Let the coordinates of point B are (a,b).
Section formula: If a point divide a line segment in m:n, then the coordinates of that point are
[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]
The line segment AB is divided by point P in the ratio of 1:4.
Using section formula, we get
[tex]P=\left(\dfrac{1(a)+4(7)}{1+4},\dfrac{1(b)+4(5)}{1+4}\right)[/tex]
[tex](10,14)=\left(\dfrac{a+28}{5},\dfrac{b+20}{5}\right)[/tex]
Comparing the coordinates on both sides, we get
[tex]\dfrac{a+28}{5}=10[/tex]
[tex]a+28=50[/tex]
[tex]a=50-28[/tex]
[tex]a=22[/tex]
And,
[tex]\dfrac{b+20}{5}=14[/tex]
[tex]b+20=70[/tex]
[tex]b=70-20[/tex]
[tex]b=50[/tex]
Therefore, the coordinates of point B are (22,50).