Respuesta :
Answer:
Explanation:
Let's assume that Helium is He and Neon is Ne
Then, the expression of the steady-state flux of Helium in a binary mixture of Helium and Neon is:
[tex]N_{He} = c_{He}v_{He}[/tex]
where;
[tex]c_{He}[/tex] = concentration of Helium
[tex]v _ {He}[/tex] = net velocity of Helium
Making [tex]v _ {He}[/tex] the subject, we have:
[tex]v_{He}=\dfrac{ N_{He} }{c_{He}}[/tex]
[tex]v_{He}=\dfrac{ 3.8 \times 10^{-9} \ kg/mol /m^2.s}{0.023 \ kgmol/m^3}[/tex]
[tex]v_{He}= 1.652 \times 10^{-7} \ m/s[/tex]
The expression for the steady-state flux of Neon
[tex]N_{Ne} = c_{Ne} \ v_{Ne}[/tex]
Here;
[tex]c_{Ne}[/tex] = Concentration of neon
[tex]v_{Ne}[/tex] = net velocity of neon species
[tex]v_{Ne} = \dfrac{N_{Ne} }{c_{Ne}}[/tex]
[tex]v_{Ne} = \dfrac{ 0 \ kgmole/m^2 .s }{0.045 \ kgmole/m^3}[/tex]
[tex]v_{Ne} = 0 \ m/s[/tex]
Thus, the net velocity of species Ne along the direction of mass transfer = 0 m/s
The average velocity V is:
[tex]V _{avg }= \dfrac{1}{c}(c_{He}v_{He} + c_{Ne}v_{Ne})[/tex]
[tex]= \dfrac{(N_{He} + N_{Ne})} {(C_{He} + C_{Ne})}[/tex]
[tex]V _{avg}= \dfrac{(3.8 \times 10^{-9} + 0) \ kgmole /m^2.s} {(0.023 + 0.045) \ kgmole/m^3}[/tex]
[tex]V _{avg}= 5.588 \times 10^{-8} \ m/s[/tex]
The average mass velocity is:
[tex]V_{mass} = \dfrac{(0.023 \times 4 ) \times 1.652\times 10^{-7} +0}{(0.023 \times 4) + (0.045 \times 20) }[/tex]
[tex]V_{mass} = 1.532 \times 10^{-8} \ m/s[/tex]