Answer:
The margin of error (E) [tex]=0.49[/tex]
Step-by-step explanation:
Given,
mean [tex]\bar{x}=6.88[/tex]
standard deviation [tex]\sigma=1.90[/tex]
sample size [tex]n=41[/tex]
[tex]90\% \quad \text{confidence interval}[/tex]
Critical value [tex]=\frac{z_\alpha}{2}\quad \quad\quad[\because\;\alpha=1-\text{confidence interval}][/tex]
[tex]=1-0.90[/tex]
[tex]\Rightarrow \alpha=0.1[/tex]
Critical value [tex]=\frac{z_{0.1}}{2}[/tex]
[tex]=z_{0.05}[/tex]
[tex]=1.645[/tex]
The margin of error (E) [tex]=\frac{z_\alpha}{2} \times\frac{\sigma}{\sqrt{n} }[/tex]
[tex]=1.645\times\frac{1.90}{\sqrt{41} }[/tex]
[tex]=0.49[/tex]
Hence, The margin of error (E) [tex]=0.49[/tex]
Complete question is attached in below.