Answer:
[tex]n' = 2212[/tex] (larger)
Step-by-step explanation:
From the question we are told that
Initial sample size n=1100
Sample range 5
Sample Proportion[tex]\hat P= x/n=>775/1100=>0.704[/tex]
99% confidence
Margin for error [tex]E=\pm2 \%=>0.02[/tex]
Generally at confidence level 99%
Level of significance [tex]\alpha =1-0.99=>0.01[/tex]
[tex]\alpha /2 =\frac{0.01}{2} =0.005[/tex]
Therefore
[tex]Z_\alpha_ /_2=Z_0_._0_0_5=2.576[/tex]
[tex]Z_\alpha_ /_2=2.576[/tex]
Generally sample size is mathematically given by
[tex]n' = (Z_\alpha_/_2 / E )^2 * \hat P * (1 - \hat P )[/tex]
[tex]n' = (2.576) / 0.025)^2 * 0.704 * (1 - 0.704)[/tex]
[tex]n' = 2212.463274[/tex]
[tex]n' = 2212[/tex]
Therefore the new sample will be larger