Answer:
We get [tex]\mathbf{n>-10\:\:and\:\:n<8}[/tex]
Or we can write as: [tex]\mathbf{-10<n<8}[/tex]
The graph is shown is figure attached below:
Step-by-step explanation:
We need to solve the inequality [tex]-1<9+n<17[/tex] and graph the answer.
Solving the inequality
[tex]-1<9+n<17[/tex]
We know that if a<u<b then we can write a<u and u<b
So, we can write
[tex]-1<9+n \:and\: 9+n<17[/tex]
Solving these equations and finding values of n
[tex]-1<9+n \:and\: 9+n<17\\9+n>-1\:and\:9+n<17\\n>-1-9\:and\:n<17-9\\n>-10\:and\:n<8[/tex]
So, we get [tex]\mathbf{n>-10\:\:and\:\:n<8}[/tex]
We can write it as: -10< n and n<8
Overlapping we get: [tex]\mathbf{-10<n<8}[/tex]
The graph is shown is figure attached below: