Respuesta :

Answer:

We get [tex]\mathbf{n>-10\:\:and\:\:n<8}[/tex]

Or we can write as:  [tex]\mathbf{-10<n<8}[/tex]

The graph is shown is figure attached below:

Step-by-step explanation:

We need to solve the inequality [tex]-1<9+n<17[/tex] and graph the answer.

Solving the inequality

[tex]-1<9+n<17[/tex]

We know that if a<u<b then we can write a<u and u<b

So, we can write

[tex]-1<9+n \:and\: 9+n<17[/tex]

Solving these equations and finding values of n

[tex]-1<9+n \:and\: 9+n<17\\9+n>-1\:and\:9+n<17\\n>-1-9\:and\:n<17-9\\n>-10\:and\:n<8[/tex]

So, we get [tex]\mathbf{n>-10\:\:and\:\:n<8}[/tex]

We can write it as: -10< n and n<8

Overlapping we get: [tex]\mathbf{-10<n<8}[/tex]

The graph is shown is figure attached below:

Ver imagen absor201
ACCESS MORE