Respuesta :

                                        Question 9

Given the segment XY with the endpoints X and Y

Given that the ray NM is the segment bisector XY

so

NM divides the segment XY into two equal parts

XM = MY

given

XM = 3x+1

MY = 8x-24

so substituting XM = 3x+1 and MY = 8x-24 in the equation

XM = MY

3x+1 = 8x-24

8x-3x = 1+24

5x = 25

divide both sides by 5

5x/5 = 25/5

x = 5

so the value of x = 5

As the length of the segment XY is:

Length of segment XY = XM + MY

                                = 3x+1 + 8x-24

                                = 11x - 23

substituting x = 5

                               = 11(5) - 23

                               = 55 - 23

                               = 32

Therefore,

The length of the segment = 32 units

                                        Question 10)

Given the segment XY with the endpoints X and Y

Given that the line n is the segment bisector XY

so

The line divides the segment XY into two equal parts at M

XM = MY

given

XM = 5x+8

MY = 9x+12

so substituting XM = 5x+8 and MY = 9x+12 in the equation

XM = MY

5x+8 = 9x+12

9x-5x = 8-12

4x = -4

divide both sides by 4

4x/4 = -4/4

x = -1

so the value of x = -1

As the length of the segment XY is:

Length of segment XY = XM + MY

                                = 5x+8 + 9x+12

                                = 14x + 20

substituting x = 1

                               = 14(-1) + 20

                               = -14+20

                               = 6

Therefore,

The length of the segment XY = 6 units

ACCESS MORE