Two spherical objects have masses of 3.1 x 10^5 kg and 6.5 x 10^3 kg. The gravitational attraction between them is 65 N. How far apart are their centers? (answer to 2 digits)

Respuesta :

Answer:

4.55 x 10⁹m

Explanation:

Given parameters:

Mass of object 1  = 3.1 x 10⁵kg

Mass of object 2 = 6.5 x 10³kg

Gravitational force  = 65N

Unknown:

Distance between them  = ?

Solution:

To solve this problem, we use the expression below from the universal gravitational law;

    Fg  =    [tex]\frac{G mass 1 x mass 2}{distance ^{2} }[/tex]  

   G = 6.67 x 10⁻¹¹

        65  = [tex]\frac{6.67 x 10^{11} x 3.1 x 10^{5} x 6.5 x 10^{3} }{distance^{2} }[/tex]    

   Distance  = 4.55 x 10⁹m

         

Their centers are at the distance of "[tex]4.55\times 10^9 \ m[/tex]".

Given:

Mass,

  • [tex]M_1 = 3.1\times 10^5 \ kg[/tex]
  • [tex]M_2 = 6.5\times 10^3 \ kg[/tex]

Gravitational force,

  • [tex]Fg = 65\ N[/tex]

We know,

  • [tex]G = 6.67\times 10^{-11}[/tex]

By using the Gravitational law, we get

→ [tex]Fg= \frac{GM_1 M_2}{distance^2}[/tex]

By substituting the values, we get

→ [tex]65 = \frac{6.67\times 10^{11}\times 3.1\times 10^5\times 6.5\times 10^3}{d^2}[/tex]

→   [tex]d = 4.55\times 10^9 \ m[/tex]

Thus the response above is right.      

Learn more:

https://brainly.com/question/22971834

ACCESS MORE