Answer:
(-7, 9)
Step-by-step explanation:
[tex]midpoint = ( \frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]
(x₁, y₁) is the coordinates of one endpoint
(x₂, y₂) is the coordinates of the other endpoint
Given that the midpoint V has coordinates of (-1, 3),
[tex]( - 1,3) = ( \frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]
Substitute the coordinates of G:
[tex]( - 1,3) = (\frac{x1 + 5}{2} , \frac{y2 - 3}{2} )[/tex]
By observation:
[tex] - 1 = \frac{x1 + 5}{2} ,\: \: 3 = \frac{y2 - 3}{2} [/tex]
-1(2)= x₁ +5 (×2 on both sides)
-2= x₁ +5
x₁= -2 -5
x₁= -7
3(2)= y₂ -3 (×2 on both sides)
6= y₂ -3
y₂= 6 +3
y₂= 9
Thus, the coordinates of H is (-7, 9).