A rectangular bathroom floor is covered with square tiles that are 1 LaTeX: \frac{1}{2}1 2 feet by 1 LaTeX: \frac{1}{2}1 2 feet. The length of the bathroom floor is 10 LaTeX: \frac{1}{2}1 2 feet and the width is 6 LaTeX: \frac{1}{2}1 2 feet. a) How many tiles does it take to cover the length of the floor?

Respuesta :

Answer:

273 tiles

Step-by-step explanation:

Given

Square tile

[tex]Side=\frac{1}{2} ft[/tex]

Bathroom floor

[tex]Length = 10\frac{1}{2}ft[/tex]

[tex]Width = 6\frac{1}{2}ft[/tex]

Required

Determine the number of tiles to cover the floor

First, we calculate the area of the floor:

[tex]A_{floor} = Length * Width[/tex]

[tex]A_{floor} = 10\frac{1}{2} * 6\frac{1}{2}[/tex]

Convert to decimals

[tex]A_{floor} = 10.5 * 6.5[/tex]

[tex]A_{floor} = 68.25ft^2[/tex]

Next, we calculate the area of the square tile:

[tex]A_{tile} = Side * Side[/tex]

[tex]A_{tile} = \frac{1}{2} * \frac{1}{2}[/tex]

Convert to decimal

[tex]A_{tile} = 0.5 * 0.5[/tex]

[tex]A_{tile} = 0.25ft^2[/tex]

The number of tiles is then calculated as:

[tex]Tiles = \frac{A_{floor}}{A_{tile}}[/tex]

[tex]Tiles = \frac{68.25ft^2}{0.25ft^2}[/tex]

[tex]Tiles = \frac{68.25}{0.25}[/tex]

[tex]Tiles = 273[/tex]