Answer:
The decibel level of this second sound is 48.021 decibels.
Step-by-step explanation:
The acoustic intensity ([tex]B_{dB}[/tex]), measured in decibels, is defined by the following formula:
[tex]B_{dB} = 10\cdot \log_{10}\left(\frac{I}{I_{o}} \right)[/tex] (1)
Where:
[tex]I_{o}[/tex] - Reference sound intensity, measured in watts per square meter.
[tex]I[/tex] - Real sound intensity, measured in watts per square meter.
If we know that [tex]B_{dB} = 42\,dB[/tex] and [tex]I_{o} = 10^{-12}\,\frac{W}{m^{2}}[/tex], then the real sound intensity of the first sound is:
[tex]\frac{B_{dB}}{10} = \log_{10}\left(\frac{I}{I_{o}} \right)[/tex]
[tex]\frac{I}{I_{o}} = 10^{\frac{B_{dB}}{10} }[/tex]
[tex]I = I_{o}\cdot 10^{\frac{B_{dB}}{10} }[/tex]
[tex]I = \left(10^{-12}\,\frac{W}{m^{2}} \right)\cdot 10^{\frac{42\,dB}{10} }[/tex]
[tex]I = 1.585\times 10^{-8}\,\frac{W}{m^{2}}[/tex]
The real sound intensity of the second sound is four times greater, that is:
[tex]I' = 6.340\times 10^{-8}\,\frac{W}{m^{2}}[/tex]
If we know that [tex]I_{o} = 10^{-12}\,\frac{W}{m^{2}}[/tex] and [tex]I' = 6.340\times 10^{-8}\,\frac{W}{m^{2}}[/tex], then the acoustic intensity of the second sound is:
[tex]B_{dB} = 10\cdot \log_{10}\left(\frac{I'}{I_{o}} \right)[/tex]
[tex]B_{dB} = 10\cdot \log_{10}\left(\frac{6.340\times 10^{-8}\,\frac{W}{m^{2}} }{10^{-12}\,\frac{W}{m^{2}} } \right)[/tex]
[tex]B_{dB} = 48.021\,dB[/tex]
The decibel level of this second sound is 48.021 decibels.