The equations of three lines are given below. Line 1: y = - 3/4 x + 3 Line 2/8 x - 6y = 2 Line 3/- 3y = 4x + 7 For each pair of lines, determine whether they are parallel, perpendicular, or neither.

Respuesta :

Answer:

No parallel lines

Lines 1 and 3 are perpendicular

Step-by-step explanation:

Given:

[tex]Line\ 1:y = -\frac{3}{4}x + 3[/tex]

[tex]Line\ 2: \frac{2}{8}x -6y = 2[/tex]

[tex]Line\ 3: 3y = 4x + 7[/tex]

Required

Determine if they are parallel, perpendicular or not

The slope intercept of a line has the form:

[tex]y = mx + b[/tex]

Where

[tex]m = slope[/tex]

First, we calculate the slope of each lines

[tex]Line\ 1:y = -\frac{3}{4}x + 3[/tex]

Compare the above to [tex]y = mx + b[/tex]

[tex]m_1 = -\frac{3}{4}[/tex]

[tex]Line\ 2: \frac{2}{8}x -6y = 2[/tex]

[tex]\frac{2}{8}x -6y = 2[/tex]

Make -6y the subject

[tex]-6y = 2 - \frac{2}{8}x[/tex]

Divide through by -6

[tex]y = -\frac{2}{6} + \frac{2}{8*6}x[/tex]

[tex]y = -\frac{1}{3} + \frac{1}{8*3}x[/tex]

[tex]y = -\frac{1}{3} + \frac{1}{24}x[/tex]

[tex]y = \frac{1}{24}x-\frac{1}{3}[/tex]

Compare the above to [tex]y = mx + b[/tex]

[tex]m_2 = \frac{1}{24}[/tex]

[tex]Line\ 3: 3y = 4x + 7[/tex]

[tex]3y = 4x + 7[/tex]

Divide through by 3

[tex]y = \frac{4}{3}x + \frac{7}{3}[/tex]

Compare the above to [tex]y = mx + b[/tex]

[tex]m_3 = \frac{4}{3}[/tex]

So, we have:

[tex]m_1 = -\frac{3}{4}[/tex]

[tex]m_2 = \frac{1}{24}[/tex]

[tex]m_3 = \frac{4}{3}[/tex]

None of the slopes are the same, so none of the lines are parallel.

However, lines 1 and 3 are perpendicular.

This is shown below

When the slope of two lines satisfy the following condition, then they are  perpendicular.

[tex]m_1 = -\frac{1}{m_3}[/tex]

This gives:

[tex]-\frac{3}{4} = -\frac{1}{4/3}[/tex]

[tex]-\frac{3}{4} = -1/\frac{4}{3}[/tex]

Convert / to *

[tex]-\frac{3}{4} = -1*\frac{3}{4}[/tex]

[tex]-\frac{3}{4} = -\frac{3}{4}[/tex]