Respuesta :
Answer:
No parallel lines
Lines 1 and 3 are perpendicular
Step-by-step explanation:
Given:
[tex]Line\ 1:y = -\frac{3}{4}x + 3[/tex]
[tex]Line\ 2: \frac{2}{8}x -6y = 2[/tex]
[tex]Line\ 3: 3y = 4x + 7[/tex]
Required
Determine if they are parallel, perpendicular or not
The slope intercept of a line has the form:
[tex]y = mx + b[/tex]
Where
[tex]m = slope[/tex]
First, we calculate the slope of each lines
[tex]Line\ 1:y = -\frac{3}{4}x + 3[/tex]
Compare the above to [tex]y = mx + b[/tex]
[tex]m_1 = -\frac{3}{4}[/tex]
[tex]Line\ 2: \frac{2}{8}x -6y = 2[/tex]
[tex]\frac{2}{8}x -6y = 2[/tex]
Make -6y the subject
[tex]-6y = 2 - \frac{2}{8}x[/tex]
Divide through by -6
[tex]y = -\frac{2}{6} + \frac{2}{8*6}x[/tex]
[tex]y = -\frac{1}{3} + \frac{1}{8*3}x[/tex]
[tex]y = -\frac{1}{3} + \frac{1}{24}x[/tex]
[tex]y = \frac{1}{24}x-\frac{1}{3}[/tex]
Compare the above to [tex]y = mx + b[/tex]
[tex]m_2 = \frac{1}{24}[/tex]
[tex]Line\ 3: 3y = 4x + 7[/tex]
[tex]3y = 4x + 7[/tex]
Divide through by 3
[tex]y = \frac{4}{3}x + \frac{7}{3}[/tex]
Compare the above to [tex]y = mx + b[/tex]
[tex]m_3 = \frac{4}{3}[/tex]
So, we have:
[tex]m_1 = -\frac{3}{4}[/tex]
[tex]m_2 = \frac{1}{24}[/tex]
[tex]m_3 = \frac{4}{3}[/tex]
None of the slopes are the same, so none of the lines are parallel.
However, lines 1 and 3 are perpendicular.
This is shown below
When the slope of two lines satisfy the following condition, then they are perpendicular.
[tex]m_1 = -\frac{1}{m_3}[/tex]
This gives:
[tex]-\frac{3}{4} = -\frac{1}{4/3}[/tex]
[tex]-\frac{3}{4} = -1/\frac{4}{3}[/tex]
Convert / to *
[tex]-\frac{3}{4} = -1*\frac{3}{4}[/tex]
[tex]-\frac{3}{4} = -\frac{3}{4}[/tex]