Respuesta :

Answer:

[tex]G(17) \approx 1.782[/tex]

Step-by-step explanation:

Let [tex]\frac{dG}{dt} = t^{-1/2}[/tex] and [tex]G(3) = -3[/tex], we proceed to find [tex]G(t)[/tex] by integrating [tex]\frac{dG}{dt}[/tex] in time:

[tex]G(t) = \int {t^{-1/2}} \, dt[/tex]

[tex]G(t) = \frac{t^{1/2}}{\frac{1}{2} } + C[/tex]

[tex]G(t) = 2\cdot t^{1/2} + C[/tex] (1)

Where [tex]C[/tex] is the constant of integration. If we know that [tex]t = 3[/tex] and [tex]G(3) = -3[/tex], then the constant of integration:

[tex]-3 = 2\cdot 3^{1/2} + C[/tex]

[tex]C = -6.464[/tex]  

The resultant function is [tex]G(t) = 2\cdot t^{1/2} -6.464[/tex].

Lastly, we evaluate this function at [tex]t = 17[/tex]:

[tex]G(17) = 2\cdot 17^{1/2}-6.464[/tex]

[tex]G(17) \approx 1.782[/tex]

ACCESS MORE