Answer: The number is [tex]\dfrac3{10}[/tex] or 0.3.
Step-by-step explanation:
Let x be the number.
Then,
[tex]((x\div 1\dfrac12)+2\dfrac12)\times1\dfrac23-1\dfrac23=2\dfrac56[/tex]
First simplify each mixed fraction into improper fraction, we get
[tex]((x\div \dfrac32)+\dfrac52)\times\dfrac53-\dfrac53=\dfrac{17}6\\\\\text{Now, }((x\div \dfrac32)+\dfrac52)\times\dfrac53=\dfrac{17}{6}+\dfrac53\\\\\Rightarrow\ ((x\div \dfrac32)+\dfrac52)\times\dfrac53=\dfrac92\\\\\Rightarrow\ ((x\div \dfrac32)+\dfrac52)=\dfrac92\times\dfrac35\\\\\Rightarrow\ ((x\div \dfrac32)+\dfrac52)=\dfrac{27}{10}\\\\\Rightarrow\ (x\div \dfrac32)=\dfrac{27}{10}-\dfrac52\\\\\Rightarrow\ (x\div \dfrac32)=\dfrac2{10}\\\\\Rightarrow\ x=\dfrac2{10}\times\dfrac32\\\\\Rightarrow\ x=\dfrac3{10}[/tex]
Hence, the number is [tex]\dfrac3{10}[/tex] or 0.3.