Respuesta :

Answer:

[tex]|u\times v|_{min}=0[/tex]

[tex]|u\times v|_{max}=72[/tex]

Step-by-step explanation:

We are given that

v=8 j

|u|=9

Let u=ai+bj

We have to find the maximum and minimum values of the length of the vector

u × v.

[tex]u\times v=\begin{vmatrix}i&j&k\\a&b&0\\0&8&0\end{vmatrix}=8ak[/tex]

[tex]|u\times v|=\sqrt{(8a)^2}=\sqrt{64a^2}[/tex]

[tex]|u|=\sqrt{a^2+b^2}=9[/tex]

[tex]a^2+b^2=81[/tex]

The minimum value of [tex]a^2[/tex]=0

Then, [tex]|u\times v|_{min}=0[/tex]

Maximum value of  [tex]a^2[/tex]=81

[tex]|u\times v|_{max}=\sqrt{64(81)}=72[/tex]

ACCESS MORE