Answer:
[tex]|u\times v|_{min}=0[/tex]
[tex]|u\times v|_{max}=72[/tex]
Step-by-step explanation:
We are given that
v=8 j
|u|=9
Let u=ai+bj
We have to find the maximum and minimum values of the length of the vector
u × v.
[tex]u\times v=\begin{vmatrix}i&j&k\\a&b&0\\0&8&0\end{vmatrix}=8ak[/tex]
[tex]|u\times v|=\sqrt{(8a)^2}=\sqrt{64a^2}[/tex]
[tex]|u|=\sqrt{a^2+b^2}=9[/tex]
[tex]a^2+b^2=81[/tex]
The minimum value of [tex]a^2[/tex]=0
Then, [tex]|u\times v|_{min}=0[/tex]
Maximum value of [tex]a^2[/tex]=81
[tex]|u\times v|_{max}=\sqrt{64(81)}=72[/tex]