A carbon steel helical compression spring with squared and ground ends has an outside diameter of 0.85 in and a wire diameter of 0.074 in. The free length is 2 in, and the solid length is 0.618 in. Find the spring constant and the load required to compress the spring to the solid length.\

Respuesta :

Solution :

Given :

d = diameter of the wire of the spring = 0.074 in

  = 0.188 cm

R = mean radius of coil [tex]$=\frac{0.85}{2}$[/tex]

                                      = 1.08 cm

G = modulus of rigidity of carbon steel wire = [tex]$79 \ GN/m^2$[/tex]

L = length of wire of spring = 2 inch

∴ L = 5.08 cm

k = spring constant

k = axial load/ axial deflection

 [tex]$k= \frac{Gd^4}{64R^3}$[/tex] ..................(1)

This is taken from the Torsion equation,

[tex]$\frac{T}{I_P}=\frac{\tau_{max}}{d/2}=\frac{G \theta}{2 \pi R}$[/tex]

[tex]$\frac{WR}{\frac{\pi}{32} d^4} = \frac{\tau_{max}}{d/2} =\frac{G \theta}{2 \pi R}$[/tex]

∴ From equation (1)

[tex]$k =\frac{79 \times 10^9 \times (0.188)^4 \times 10^{-8}}{64 \times (1.08)^3 \times 10^{-6}}$[/tex]

[tex]$k = 11334 \ N/m $[/tex]

So the axial compression is [tex]$ \delta =0.618 \ inch$[/tex] = 1.57 cm

Axial load required W= k x δ

                                   = 11334 x 1.57

                                   = 177.95 N

ACCESS MORE