Solution :
Given :
d = diameter of the wire of the spring = 0.074 in
= 0.188 cm
R = mean radius of coil [tex]$=\frac{0.85}{2}$[/tex]
= 1.08 cm
G = modulus of rigidity of carbon steel wire = [tex]$79 \ GN/m^2$[/tex]
L = length of wire of spring = 2 inch
∴ L = 5.08 cm
k = spring constant
k = axial load/ axial deflection
[tex]$k= \frac{Gd^4}{64R^3}$[/tex] ..................(1)
This is taken from the Torsion equation,
[tex]$\frac{T}{I_P}=\frac{\tau_{max}}{d/2}=\frac{G \theta}{2 \pi R}$[/tex]
[tex]$\frac{WR}{\frac{\pi}{32} d^4} = \frac{\tau_{max}}{d/2} =\frac{G \theta}{2 \pi R}$[/tex]
∴ From equation (1)
[tex]$k =\frac{79 \times 10^9 \times (0.188)^4 \times 10^{-8}}{64 \times (1.08)^3 \times 10^{-6}}$[/tex]
[tex]$k = 11334 \ N/m $[/tex]
So the axial compression is [tex]$ \delta =0.618 \ inch$[/tex] = 1.57 cm
Axial load required W= k x δ
= 11334 x 1.57
= 177.95 N