Answer:
The solution can be defined as follows:
Step-by-step explanation:
[tex]H_0 : p_1 = p_2\\\\H_a : p_1 \neq p_2\\[/tex]
Testing the statistics values:
[tex]p_1 = \frac{141}{523} = 0.2696 \\\\ n_1 = 523\\\\p_2 = \frac{81}{477} = 0.1698\\\\ n_2 = 477[/tex]
[tex]p = \frac{(p_1 \times n_1 + p_2 \times n_2)}{(n_1 + n_2)}[/tex]
[tex]= \frac{(0.2696 \times 523 + 0.1698 \times 477)}{( 523 + 477)}\\\\= \frac{(141.0008 + 80.9946)}{(1000)}\\\\= \frac{(221.99)}{(1000)}\\\\= \frac{(222.0)}{(1000)}\\\\= 0.2220[/tex]
[tex]SE = \sqrt{ p \times ( 1 - p ) \times [ (\frac{1}{n_1}) + (\frac{1}{n_2}) ] }[/tex]
[tex]= \sqrt{( 0.222 \times (1-0.222) \times((\frac{1}{523}) + (\frac{1}{477})))}\\\\= 0.0263[/tex]
[tex]z = \frac{(p_1 - p_2)}{SE}[/tex]
[tex]= \frac{( 0.2696 - 0.1698)}{0.0263}\\\\= 3.7947[/tex]
p = 0.0001
It reject all the null hypothesis values