Answer:
[tex]\displaystyle Point \ A(-2, 5)\\Point \ B(5, 5)\\d = 7 \ units[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Reading a Cartesian coordinate plane
- Coordinates
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Find points from graph.
Point A(-2, 5)
Point B(5, 5)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [DF]: [tex]\displaystyle d = \sqrt{(5--2)^2+(5-5)^2}[/tex]
- (Parenthesis) Simplify: [tex]\displaystyle d = \sqrt{(5+2)^2+(5-5)^2}[/tex]
- (Parenthesis) Add/Subtract: [tex]\displaystyle d = \sqrt{(7)^2+(0)^2}[/tex]
- [√Radical] Exponent: [tex]\displaystyle d = \sqrt{(7)^2}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 7[/tex]