Answer:
The answer is "[tex]\bold{v(t) = -7 \cos (t) -3}[/tex]"
Explanation:
Consider the function [tex]a(t) = 7 \sin (t)[/tex] speed for an Object , and [tex]V(0) = -10 \frac{m}{s}[/tex] is the initial speed of the object. Find an object-speed v(t) equation:
[tex]\to a(t) = 7 \sin(t) \\\\\to v(t) = \int a(t) dt\\[/tex]
[tex]= 7 \int \sin (t) dt \\\\= -7 \cos(t) + C[/tex]
Substituting the t = 0 in v(t)
[tex]\to v(0) = - 7 \cos(0) + C \\\\\to -10 = -7(1) +C \\\\\to C = -10 +7\\\\\to C= -3[/tex]
after substituting the value C:
[tex]= - 3 in v(t) = -7 \cos (t) +c \\\\\to v(t) = -7 \cos(t) -3[/tex]