Answer:
[tex]P(x\le 4\ or x> 10) = \frac{4}{7}[/tex] or [tex]P(x\le 4\ or x> 10) = 0.5714[/tex]
Step-by-step explanation:
Given
[tex]x = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14\}[/tex]
Required
Determine [tex]P(x\le 4\ or x> 10)[/tex]
Because the events are independent, the probability can be solved using:
[tex]P(A\ or\ B) = P(A) + P(B)[/tex]
So, we have:
[tex]P(x\le 4\ or x> 10) = P(x \le 4) + P(x > 10)[/tex]
When [tex]x \le 4[/tex], we have: [tex]x = \{1,2,3,4\}[/tex]
So:
[tex]P(x \le 4) = \frac{4}{14}[/tex]
Also:
When [tex]x > 10[/tex], we have: [tex]x = \{11,12,13,14\}[/tex]
So:
[tex]P(x>10) =\frac{4}{14}[/tex]
[tex]P(x\le 4\ or x> 10) = P(x \le 4) + P(x > 10)[/tex] becomes
[tex]P(x\le 4\ or x> 10) = \frac{4}{14} + \frac{4}{14}[/tex]
[tex]P(x\le 4\ or x> 10) = \frac{4+4}{14}[/tex]
[tex]P(x\le 4\ or x> 10) = \frac{8}{14}[/tex]
[tex]P(x\le 4\ or x> 10) = \frac{4}{7}[/tex]
[tex]P(x\le 4\ or x> 10) = 0.5714[/tex]