A point moves on the hyperbola so that its y-coordinate is increasing at a constant rate of 4 units per second. How fast is the x-coordinate changing when x

Respuesta :

Answer:

x-coordinate is changing at a rate of 1.9 units per second.

Step-by-step explanation:

Given hyperbola,

  [tex]3x^2-y^2=23[/tex]

Differentiate both side w.r.t. t

   [tex]\frac{d}{dt} [3x^2-y^2]=\frac{d}{dt}[23][/tex]

[tex]\Rightarrow \frac{d}{dt} [3x^2]-\frac{d}{dt}[y^2]=0[/tex]

[tex]\Rightarrow 3\times\frac{d}{dt} [x^2]-2y\frac{dy}{dt}=0[/tex]

[tex]\Rightarrow 3\times 2x\frac{dx}{dt}-2y\frac{dy}{dt}=0[/tex]

[tex]\Rightarrow 6x\frac{dx}{dt}=2y\frac{dy}{dt}[/tex]

[tex]\Rightarrow \frac{dx}{dt} =\frac{2y}{6x} \times\frac{dy}{dt} =\frac{y}{3r} \times\frac{dy}{dt}[/tex]

[tex]\Rightarrow 3x^2-y^2 = 23[/tex]

[tex]\Rightarrow 3\times 4^2-y^2 =23 \quad \quad \text{when} \; x=4[/tex]

[tex]\Rightarrow 48-23=y^2\\\Rightarrow y=\sqrt{25} = 5[/tex]

[tex]\frac{dy}{dt}=4[/tex]

Now, [tex]\frac{dx}{dt} =\frac{y}{3r} \times\frac{dy}{dt}[/tex]

             [tex]=\frac{5\times 4}{3\times 4} =\frac{5}{3}[/tex]

    [tex]\Rightarrow \frac{dx}{dt} =1.88\bar{8}=1.9[/tex]

Hence, the x-coordinate is changing at a rate of 1.9 units per second.

Complete question is attached in below.

Ver imagen Omm2
RELAXING NOICE
Relax