Respuesta :
Answer: The probability that the 7th chip is red = 0.4
Step-by-step explanation:
Given that;
an urn contains 40 red chips and 60 white chips
6 chips are randomly drawn and discarded and a 7th chip is drawn,
lets consider E as the the event that represent the 7th chip is red.
so probability that 7th chip is red will be;
P(E) = ⁶∑[tex]_{i=0}[/tex] [tex]\left[\begin{array}{ccc}40\\i\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}40\\6-i\\\end{array}\right][/tex] × [tex]\left[\begin{array}{ccc}40-i\\1\\\end{array}\right][/tex] / [tex]\left[\begin{array}{ccc}100\\6\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}94\\1\\\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}40\\0\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}60\\6\\\end{array}\right][/tex]×[tex]\left[\begin{array}{ccc}40\\1\\\end{array}\right][/tex] + [tex]\left[\begin{array}{ccc}40\\1\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}60\\5\\\end{array}\right][/tex]×[tex]\left[\begin{array}{ccc}39\\1\\\end{array}\right][/tex] + ......+ [tex]\left[\begin{array}{ccc}4\\6\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}60\\0\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}34\\1\\\end{array}\right][/tex] / [tex]\left[\begin{array}{ccc}100\\6\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}94\\1\\\end{array}\right][/tex]
= [ 2002554400 + ..... + 130504920 ] / [tex]\left[\begin{array}{ccc}100\\6\\\end{array}\right][/tex][tex]\left[\begin{array}{ccc}94\\1\\\end{array}\right][/tex]
= 44821170240 / (1192052400)(94)
= 44821170240 / 112052925600
= 0.4
Therefore the probability that the 7th chip is red = 0.4