An open-top box with a square base is to have a volume of 4 cubic feet. Find the dimensions of the box (in ft) that can be made with the smallest amount of material.

Respuesta :

Answer:

The dimension of box=[tex]2ft\times 2ft\times 1ft[/tex]

Step-by-step explanation:

We are given that

Volume of box=4 cubic feet

Let x be the side of square base and h be the height of box

Volume of box=[tex]lbh=x^2h[/tex]

[tex]4=x^2h[/tex]

[tex]h=\frac{4}{x^2}[/tex]

Now, surface area of box,A=[tex]x^2+4xh[/tex]

[tex]A=x^2+4x(\frac{4}{x^2})=x^2+\frac{16}{x}[/tex]

[tex]\frac{dA}{dx}=2x-\frac{16}{x^2}[/tex]

[tex]\frac{dA}{dx}=0[/tex]

[tex]2x-\frac{16}{x^2}=0[/tex]

[tex]2x=\frac{16}{x^2}[/tex]

[tex]x^3=8[/tex]

[tex]x=2[/tex]

[tex]\frac{d^2A}{dx^2}=2+\frac{32}{x^3}[/tex]

Substitute x=2

[tex]\frac{d^2A}{dx^2}=2+\frac{32}{2^3}=2+4=6>0[/tex]

Hence, the area of box is minimum at x=2

Therefore, side of square base,x=2 ft

Height of box,h=[tex]\frac{4}{2^2}=1 ft[/tex]

Hence, the dimension of box=[tex]2ft\times 2ft\times 1ft[/tex]

ACCESS MORE