Respuesta :

Space

Answer:

[tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} + \frac{1}{x} + C[/tex]

General Formulas and Concepts:

Algebra I

  • Exponential Property [Dividing]:                                                                   [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]
  • Exponential Property [Rewrite]:                                                                   [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]

Calculus

Integration

  • Integrals
  • [Indefinite Integrals] integration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                       [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx[/tex]

Step 2: Integrate

  1. [Integrand] Rewrite:                                                                                       [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {\bigg( \frac{x^3}{x^2} - \frac{1}{x^2} \bigg)} \, dx[/tex]
  2. Simplify [Exponential Property - Dividing]:                                                  [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {\bigg( x - \frac{1}{x^2} \bigg)} \, dx[/tex]
  3. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {x} \, dx - \int {\frac{1}{x^2}} \, dx[/tex]
  4. [2nd Integral] Rewrite [Exponential Property - Rewrite]:                             [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {x} \, dx - \int {x^{-2}} \, dx[/tex]
  5. [Integrals] Reverse Power Rule:                                                                   [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} - (-x^{-1}) + C[/tex]
  6. Simplify/Rewrite [Exponential Property - Rewrite]:                                     [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} + \frac{1}{x} + C[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

ACCESS MORE