Respuesta :
Answer:
[tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} + \frac{1}{x} + C[/tex]
General Formulas and Concepts:
Algebra I
- Exponential Property [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]
- Exponential Property [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
Calculus
Integration
- Integrals
- [Indefinite Integrals] integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx[/tex]
Step 2: Integrate
- [Integrand] Rewrite: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {\bigg( \frac{x^3}{x^2} - \frac{1}{x^2} \bigg)} \, dx[/tex]
- Simplify [Exponential Property - Dividing]: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {\bigg( x - \frac{1}{x^2} \bigg)} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {x} \, dx - \int {\frac{1}{x^2}} \, dx[/tex]
- [2nd Integral] Rewrite [Exponential Property - Rewrite]: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \int {x} \, dx - \int {x^{-2}} \, dx[/tex]
- [Integrals] Reverse Power Rule: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} - (-x^{-1}) + C[/tex]
- Simplify/Rewrite [Exponential Property - Rewrite]: [tex]\displaystyle \int {\frac{x^3 - 1}{x^2}} \, dx = \frac{x^2}{2} + \frac{1}{x} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration