Answer:
[tex]\lambda=10000[/tex] miles
Step-by-step explanation:
We are given that
[tex]\beta=10000 miles[/tex]
Exponential distribution function
[tex]f(x)=\frac{1}{\beta}e^{-\frac{x}{\beta}}, x\geq 0[/tex]
0, otherwise
Using the formula
[tex]f(x)=\frac{1}{10000}e^{-\frac{x}{10000}},x\geq0[/tex]
0, otherwise
[tex]E(x)=\int_{-\infty}^{\infty}xf(x) dx[/tex]
Using the formula
[tex]\lambda=E(x)=\frac{1}{10000}\int_{0}^{\infty}xe^{-\frac{x}{10000}}dx[/tex]
[tex]\lambda=\frac{1}{10000}([-10000xe^{-\frac{x}{10000}}]^{\infty}_{0}+10000[-10000e^{-\frac{x}{10000}}]^{\infty}_{0})[/tex]
Using formula
[tex]\int u\cdot vdx=u\int vdx-\int (\frac{du}{dx}\int vdx)dx[/tex]
[tex]\lambda=\frac{1}{10000}(0-(10000)^2(0-1))=10000[/tex]
Hence, the value of [tex]\lambda=10000[/tex] miles