The number of miles that a particular car can run before itsbattery wears out is exponentially distributed with an averageof 10,000 miles.Problems1. The mean of a probability distribution, , is given by . Find given that theaverage of this exponential distribution is 10,000.

Respuesta :

Answer:

[tex]\lambda=10000[/tex] miles

Step-by-step explanation:

We are given that

[tex]\beta=10000 miles[/tex]

Exponential distribution function

[tex]f(x)=\frac{1}{\beta}e^{-\frac{x}{\beta}}, x\geq 0[/tex]

             0, otherwise

Using the formula

[tex]f(x)=\frac{1}{10000}e^{-\frac{x}{10000}},x\geq0[/tex]

              0, otherwise

[tex]E(x)=\int_{-\infty}^{\infty}xf(x) dx[/tex]

Using the formula

[tex]\lambda=E(x)=\frac{1}{10000}\int_{0}^{\infty}xe^{-\frac{x}{10000}}dx[/tex]

[tex]\lambda=\frac{1}{10000}([-10000xe^{-\frac{x}{10000}}]^{\infty}_{0}+10000[-10000e^{-\frac{x}{10000}}]^{\infty}_{0})[/tex]

Using formula

[tex]\int u\cdot vdx=u\int vdx-\int (\frac{du}{dx}\int vdx)dx[/tex]

[tex]\lambda=\frac{1}{10000}(0-(10000)^2(0-1))=10000[/tex]

Hence, the value of [tex]\lambda=10000[/tex] miles

ACCESS MORE