Complete Question:
A closed box has a square base with side length L feet and height h feet. Given that the volume of the box is 39 cubic feet, express the surface area of the box in terms of L only.
Answer:
[tex]A = \frac{156}{L} + 2L^2[/tex]
Step-by-step explanation:
Given
[tex]Volume = 39ft^3[/tex]
Required
Express the surface area in terms of L
Because the box has a square base:
The volume is:
[tex]Volume = Base\ Area * Height[/tex]
Where
[tex]Base\ Area = L * L[/tex]
So, we have:
[tex]Volume = L * L * H[/tex]
Substitute 39 for Volume
[tex]39= L * L * H[/tex]
[tex]39= L^2 * H[/tex]
Make H the subject
[tex]H = \frac{39}{L^2}[/tex]
The surface area (A) of a box with square base is:
[tex]A = 2(LH + LH + L^2)[/tex]
[tex]A = 2(2LH + L^2)[/tex]
Open bracket
[tex]A = 4LH + 2L^2[/tex]
Substitute [tex]\frac{39}{L^2}[/tex] for H
[tex]A = 4L * \frac{39}{L^2} + 2L^2[/tex]
[tex]A = \frac{4L *39}{L^2} + 2L^2[/tex]
[tex]A = \frac{4*39}{L} + 2L^2[/tex]
[tex]A = \frac{156}{L} + 2L^2[/tex]